| Q.P. C | Q.P. Code: 16CS507 |                                                                                    |                  |                 |                     |                               |             |         |          |                      |                    |           | RIG                  | 6            |  |
|--------|--------------------|------------------------------------------------------------------------------------|------------------|-----------------|---------------------|-------------------------------|-------------|---------|----------|----------------------|--------------------|-----------|----------------------|--------------|--|
| Reg.   | No                 | ):                                                                                 |                  | £79             | si eqq              | 1199.3                        | e gre       | 1660    |          |                      | e diga             | 1700      | ]                    |              |  |
|        | SII                | DDHA                                                                               | RTH              | INS             | TITU                | TE O                          | FEN         | GIN     | EERIN    | NG &                 | TEC                | HNOL      | LOGY:: PUTTUR        |              |  |
|        |                    | B To                                                                               | ch II            | Voa             | risc                | moet                          | (Al         | JTON    | OMO      | JS)<br>arv I         | Evami              | natio     | ns Feb-2021          |              |  |
|        |                    | M                                                                                  | атн              | EMA             | TIC                 | AL FO                         | DUN         | DATI    | ONS (    | OF C                 | OMPI               | ITER      | SCIENCE              |              |  |
|        |                    |                                                                                    |                  |                 |                     | (C                            | omm         | on to   | CSE &    | c CSI                | T)                 |           |                      |              |  |
| Time:  | 3 ho               | ours                                                                               |                  |                 |                     |                               |             |         |          |                      |                    |           | Max. Mar             | ks: 60       |  |
|        |                    |                                                                                    |                  |                 | (A                  | nswe                          | r all F     | ive U   | nits 5   | x 12 =               | = <b>60</b> M      | arks)     |                      |              |  |
| 1      | 9                  | Explain Conjunction and Disjunction with suitable examples                         |                  |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        | b                  | <b>b</b> Define tautology and contradiction with examples.                         |                  |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        |                    |                                                                                    |                  | 0.              |                     |                               |             |         | OR       | -                    |                    |           |                      |              |  |
| 2      | a                  | What is                                                                            | s prir           | nciple          | disju               | nctive                        | norm        | nal for | rm? Oł   | tain                 | he PD              | NF of     |                      | 6N           |  |
|        | h                  | $P \rightarrow ((I What is$                                                        | $2 \rightarrow$  | $Q) \wedge$     | $\neg(\neg \zeta$   | V - I                         | <b>'</b> )) | nol fo  |          | htoin                | tha DC             | NE of     |                      |              |  |
|        | U                  | $(-P) \rightarrow$                                                                 | R)               | $\sim (O \cdot$ | $\leftrightarrow P$ | metry                         | 2 11011     | nai ic  |          | otam                 | the FC             | INF OI    |                      | OIV          |  |
|        |                    | (11)                                                                               | <b>I</b> () /    | . (Q            | (71)                |                               |             | U       | NIT-II   |                      |                    |           |                      |              |  |
| 3      | a                  | Define                                                                             | Bije             | ctive           | functi              | on. Gi                        | ive t       | wo e    | xample   | es.                  |                    |           |                      | 6N           |  |
|        | b                  | Define primitive recursive function? Show that the function $f(x, y) = x + y$ is 6 |                  |                 |                     |                               |             |         |          |                      |                    |           |                      | 6N           |  |
|        | ]                  | primitive recursive.                                                               |                  |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        | 0                  |                                                                                    |                  |                 |                     |                               |             |         | OR       |                      |                    |           |                      |              |  |
| 4      | a                  | Prove                                                                              | that t           | the se          | et $Z$              | of all                        | intege      | ers wi  | th the   | oinar                | opera              | tion *    | , defined as         | OIV          |  |
|        | (                  | $a * b = a + b + 1, \forall a, b \in Z$ is an abelian group.                       |                  |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        | b                  | Show<br>modulc                                                                     | that<br>6.       | the s           | set={1              | ,2,3,4                        | ,5} i       | s not   | a gro    | oup ı                | inder              | additic   | on & multiplicatior  | 1 <b>6</b> N |  |
|        |                    |                                                                                    |                  |                 |                     |                               |             | UN      | IT-II    | [                    |                    |           |                      |              |  |
| 5      | a                  | Define                                                                             | prod             | uct ru          | ile? S              | tate B                        | inomi       | al the  | eorem?   | Defi                 | ne perr            | nutatio   | on?                  | 6N           |  |
|        | b.                 | Find th                                                                            | e coe            | efficie         | ent of              | (i) $\mathbf{x}^{\mathbf{y}}$ | $y^2 z^2$   | in (2x  | -y+z     | ) <sup>9</sup> . (ii | $) x^{0} y^{3}$    | in (x ·   | - 3y) <sup>9</sup>   | 6N           |  |
| 6      |                    | Find th                                                                            | 0 19111          | nhar            | oform               | noon                          | onta        | oftho   | OR       | in th                | o word             | ACC       |                      | 43.          |  |
| U      | a<br>b             | How m                                                                              | e nu<br>nanv     | perm            | utatio              | ns ca                         | n he        | forme   | ed out   | of th                | e word<br>e letter | s of v    | vord "SUNDAY"        | 2 8N         |  |
|        |                    | How many of these (i) Begin with S? (ii) end with Y? (iii) begin with S & end      |                  |                 |                     |                               |             |         |          |                      |                    |           | n with S & end with  | 1            |  |
|        |                    | Y ? (iv)                                                                           | ) S &            | Y alv           | ways t              | ogeth                         | er?         |         |          |                      | Ì                  |           |                      |              |  |
|        |                    |                                                                                    |                  |                 |                     |                               |             | UN      | VIT-IV   | ſ                    |                    |           |                      |              |  |
| 7      | a                  | Solve                                                                              | a <sub>n</sub> = | $= a_n - 1$     | +2a                 | n-2,n>                        | > 2 wi      | th co   | ndition  | the i                | nitial             | $a_0 = 0$ | $, a_1 = 1.$         | 6N           |  |
|        | b                  | Solve                                                                              | a n+             | 2 - 5 8         | $l_{n+1} + $        | $6 a_n =$                     | 2, w        | ith co  | ondition | n the                | initial a          | $a_0 = 1$ | $, a_1 = -1.$        | 6N           |  |
| 8      | 9                  | Determ                                                                             | ine t            | he se           | nuene               | e gene                        | arated      | by (i   | OR       | = 20 <sup>x</sup>    | $+3v^{2}$          | ;;) 7 e   | $8x \qquad 4 e^{3x}$ | 61           |  |
| 0      | b                  | Find the sequence generated by the following generating functions                  |                  |                 |                     |                               |             |         |          |                      |                    |           |                      | 6N           |  |
|        |                    | (i) (2x -                                                                          | $(-3)^{3}$       |                 | 8                   |                               |             |         |          | 0-1101               |                    |           |                      | 011          |  |
|        |                    | (ii)                                                                               | $x^4$            |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        |                    | _                                                                                  |                  | -               |                     |                               |             |         |          |                      |                    |           |                      |              |  |
|        |                    | 1                                                                                  | -x               |                 |                     |                               |             |         |          |                      |                    |           |                      |              |  |

## Q.P. Code: 16CS507

## UNIT-V

9 a Show that "In any graph the number of odd degree vertices is even".b Show that the two graphs shown below are isomorphic.



## OR

- 10 a Show that the maximum number of edges in a simple graph with n vertices is 6M n(n-1)/2
  - **b** Explain graph coloring and chromatic number with suitable examples.

**6M** 

**6M** 

**6M** 

**R16** 

## \*\*\* END \*\*\*